
Towards More Secure Code
or

Why Devs Should Make My Job Harder

David Gstir
sigma star gmbh
2023‐07‐13

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Hello!
David Gstir:
› Spent a lot of time writing and designing
code
› Now: stares at other people’s code and
helps them fix improve it (security‐ and
other‐wise)
› Focus:

› software security
› Cryptography
› Software architecture
› Linux

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

sigma star gmbh

Core Areas:
› Embedded Systems
› Linux and Linux Kernel
› Cryptography

Services:
› Engineering Consulting (Systems Engineering,
Security Engineering, Troubleshooting/Debugging)
› Security Consulting (Assessments, Research,
Design)
› Trainings

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Software Security

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Insecure Software
Just some severe vulnerabilities since June 2023:

› Microsoft: Remote‐code execution (RCE) flaw that can be exploited by maliciously crafted
Microsoft Office files (CVE‐2023‐36884)
› Apple: RCE in WebKit (Apple macOS, iOS, iPadOS, CVE‐2023‐37450, unpatched)
› Google: Privilege escalation in Google Pixel devices (CVE‐2023‐21399, details not yet
announced)
› Linux: Mainline Linux Kernel (v6.1+) privilege escalation (CVE‐2023‐3269, StackRot)
› Fortinet:

› RCE via publicly accessible VPN interface in FortiOS (CVE‐2023‐33308)
› RCD via TLS DPI feature of FortiProxy (CVE‐2023‐33308)

› Barracuda: RCE in E‐Mail Security Gateway devices (CVE‐2023‐2868, needs new
Hardware if compromised)
› Cisco: Information leak (broken cryptography) in Cisco ACI Multi‐Site CloudSec on
Nexus‐9000 series (CVE‐2023‐20185, wont fix)
› Mastodon: RCE via media attachments (CVE‐2023‐36460)
› …

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Feels Like…

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Why is Software Insecure?

An attempt based on personal experience:

› Software is complex
› Time/budget constraints: There is no time, we have to just make it work!
› Requirements change
› We don’t use full potential of tools
› We constantly add new dependencies, frameworks, languages and technologies
› Engineers have too little knowledge about good practices
› …

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

How Do We Improve That?

› There is no silver bullet (sorry Rust ppl.)
› Include security at every step of project (design to maintenance)
› Identifying threats:

› Threat modeling
› Risk management
› …

› Prevention & mitigation:
› Code reviews
› Static and dynamic code analysis tools
› External security audits, pentests etc.
› Defense‐in‐depth
› Learn about potential pitfalls
› …

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Security Auditor PoV

› My job is hard when I cannot find vulns in your system:
› I have to explain what is good in your system instead of listing vulnerabilities
› Might get me to question my expert knowledge ;‐)

› However, we still find simple mistakes in production systems
› These are often easy to avoid!
› Devs: learn more about common security vulnerabilities to avoid them!

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Let’s Play a Game!

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Vulnerability Examples

› Let’s look at some easy to avoid
vulnerabilities
› All examples are based on real issues, but
modified for demonstration
› There is no particular order, grouping by
topics, …

Play along:
› Assume you do a code review
› You get 1 point per example if you
wouldn’t have approved the merge
request
› Be honest with yourself! ;‐)

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

1. Privileges

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Process Privileges (1/3)

Process list:

1 $ ps aux
2 [...]
3 root 2805 0.1 0.2 17496 10988 ? Ss 09:52 0:00 /opt/your-app
4 [...]

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Process Privileges (2/3)

› There are many reasons why you might think you need to run as root
› You usually don’t!

› You need to know which files your app uses!
› chmod 777 <all-folders> can also be symptom of that

› Instead:
› Just need a single capability (man capabilities(7))
› Do the setup with high privileges and drop them afterwards
› Fork a process with high privileges and do main app logic in unprivileged process

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

CVE‐2023‐2868

› Barracuda E‐Mail Gateway vuln. recently in news
› Processed mail attachments using Perl
› Processing was done with high privileges
› This allowed full compromise (rootkit installation
etc.)
› See
https://www.mandiant.com/resources/blog/barracuda‐
esg‐exploited‐globally

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

But I run everything in containers!

› docker run -u 0
› docker run --privileged
› docker run --cap-add=ALL
› …
› Same is possible in Kubernetes and friends

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

2. HTTP Requests

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Making HTTP Requests (1/2)

1 resp, err := http.Get(url)
2 if err != nil {
3 // handle error
4 }
5 defer resp.Body.Close()
6 body, err := io.ReadAll(resp.Body)
7 // ...

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Making HTTP Requests (2/2)

› Assume resp.Body is huge and url is untrusted
› Attacker can use up all your RAM and cause DoS
› Instead: limit read size
› Other languages have similar API that promotes misuse

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

3. Url Verification

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Url Verification (1/2)
1 const wantedDomain = "sigma-star.at"
2

3 func isValidUrl(rawUrl string) bool {
4 u, err := url.Parse(rawUrl)
5 if err != nil {
6 return false
7 }
8 if u.Scheme != "https" && u.Hostname() != "localhost" {
9 return false

10 }
11 return strings.HasSuffix(u.Hostname(), wantedDomain)
12 }
13

14 func main() {
15 // ...
16 if !isValidUrl(userInput) {
17 log.Fatalln("Invalid␣url")
18 }
19 // ...
20 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Url Verification (2/2)

› Buy evil-sigma-star.at now, it’s still available!
› strings.HasSuffix() is insufficient here
› RegEx can be nasty too:

› DoS via RegEx in Node.JS and friends
› ^foo.sigma-star.at$ matches foodsigma-star.at

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

4. Clearing Buffers

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Clearing Buffers (1/2)

Since Heartbleed we all know clearing secrets from memory is important
1 int encrypt_it(uint8_t *buf, size_t buf_len, char *keypath)
2 {
3 int ret;
4 uint8_t *key;
5

6 key = load_key(keypath);
7 // ...
8

9 ret = encrypt(buf, buf_len, key, key_size);
10 // ...
11

12 memset(key, 0, key_size);
13 free(key);
14 return ret;
15 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Clearing Buffers (2/2)

› Compilers can remove and partially re‐arrange code
› Here, the optimizer in the compiler will remove memset as key is freed anyways
› This can happen with other languages too!
› Crypto libraries offer constructs which are protected against accidental removal
(e.g. OPENSSL_cleanse, explicit_memset, explicit_bzero, memset_s)

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

5. Access Checks

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Access Checks (1/2)

1 int serve_file(char *sanitized_path)
2 {
3 struct stat stbuf;
4 int ret, fd;
5

6 ret = stat(sanitized_path, &stbuf);
7 // ...
8

9 // only serve our own files
10 if (stbuf.st_uid != www_uid) {
11 return EPERM;
12 }
13

14 fd = open(sanitized_path, O_RDONLY);
15 // ... serve file
16

17 return 0;
18 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

TOCTOU

› This is a time‐of‐check vs. time‐of‐use vulnerability
› Between stat and open anything can happen
› Another thread can change things
› In this case we delete the file and create another one in that place
› E.g. a symlink to /etc/shadow
› Secure: first open, then fstat

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

6. Processing Input

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Processing Input (1/2)
1 static int do_mgmt_client_cmd(struct child_ctx *ctx, int client_fd)
2 {
3 char buf[512] = { 0 };
4 ssize_t n;
5

6 n = read(client_fd, buf, sizeof(buf));
7 if (n > 0) {
8 // ...
9 if (strcmp("gethostname", buf) == 0) {

10 char hostname[HOST_NAME_MAX];
11 gethostname(hostname, sizeof(hostname));
12 // ...
13

14 n = snprintf(buf, sizeof(buf), "ok!\t%s\n", hostname);
15 } else { // ... }
16

17 write(client_fd, buf, n);
18 }
19 return 0;
20 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Processing Input (2/2)

› Actually two bugs:
› We assume input string in buf is NULL terminated
› snprintf return code can be below 0

› Checking return codes is crucial!
› Reading documentation often suffices

› We’ve found vulns by simply reading the man page

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

7. HTTP File Upload

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

HTTP File Upload (1/3)

Common Task:

› File upload via HTTP endpoint
› Only images are allowed
› What can go wrong? Ideas?

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

HTTP File Upload (2/3)

HTML on client:

1 <form action="upload" method="post"
2 enctype="multipart/form-data">
3 <input type="file" name="file" />
4 <input type="submit" value="upload" />
5 </form>

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

HTTP File Upload (3/3)

POST payload:

1 Content-Type: multipart/form-data; boundary=----6831
2 Content-Length: 247
3
4 ----6831
5 Content-Disposition: form-data; name="file"; filename="t.txt"
6 Content-Type: text/plain
7
8 [file-content]
9
10 ----6831

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Solution

Common things to get wrong:

1. Authorization: Who is authorized to upload files
2. Max. Upload size: Out of RAM or HDD space ‐ DoS; with cloud storage: high costs
3. Encryption during transport –> HTTPS ‐ incl. all the problems that go with SSL/TLS
4. Path sanitation: Avoid attacker from overwriting critical system files or other uploaded
files

5. File type restriction: How to avoid unwanted file types (eg executables)
6. File content check

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

8. JSONWeb Tokens

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Authorization with JWT (1/2)

Setup:

› Consider a REST API
› Fronted is a SPA written in Angular, React or other fancy Framework
› You need to authenticate your users and choose to issue then a JWT after login

Problems:

› How long is a JWT valid?
› How do you revoke a JWT?
› How do you store it in your SPA?

Bonus:

› What configuration do you use for JWT?
› What properties of the JWT do you verify on every request?

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Authorization with JWT (2/2)

› JWT are intended as short‐lived tokens
› Ideally they are used only once
› There is no revocation for individual JWTs! You’d need to keep a list yourself
› Storing in SPA:

› Likely accessible to your JS code –> XSS vulns hurt
› You could use a cookie –> what is the point of JWT then?

› Most of the time a plain old session cookie would suffice
› For OAuth2/OIDC flows you will still use JWT and there it (mostly) makes sense

› But, don’t use a flow that stores the JWT in the SPA/browser again!

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

9. Encryption

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Crypting Things (1/3)

Encrypt data:

› Use AEAD cipher AES‐GCM
› genNonce() generates a random 12‐byte nonce (number used once)
› newAESGCM(...) initializes a new cipher.AEAD for AES‐GCM with key
› aesgcm.Seal(...) encrypts and authenticates the plaintext in‐place, auth tag is append
› aesgcm.Open(...) verifies auth tag and decrypts in‐place

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Crypting Things (2/3)
1 package main
2
3 import (
4 "crypto/aes"
5 "crypto/cipher"
6 "encoding/hex"
7 "fmt"
8 "math/rand"
9)

10
11 // Builds new AES-GCM cipher with given key
12 func newAESGCM(key []byte) (cipher.AEAD, error) {
13 block, err := aes.NewCipher(key)
14 if err != nil {
15 return nil, err
16 }
17
18 return cipher.NewGCM(block)
19 }
20
21 func genNonce() ([]byte, error) {
22 var nonce = make([]byte, 12)
23 if _, err := rand.Read(nonce); err != nil {
24 return nil, err
25 }
26
27 return nonce, nil
28 }

1 func encryptAndAuth(pt, key []byte) (ct, nonce []byte, err ↰
error) {

2 aesgcm, err := newAESGCM(key)
3 if err != nil {
4 return nil, nil, err
5 }
6
7 nonce, err = genNonce()
8 if err != nil {
9 return nil, nil, err

10 }
11
12 ct = aesgcm.Seal(nil, nonce, pt, nil)
13 return
14 }
15
16 func decryptAndAuth(ct, nonce, key []byte) ([]byte, error) {
17 aesgcm, err := newAESGCM(key)
18 if err != nil {
19 return nil, err
20 }
21
22 return aesgcm.Open(nil, nonce, ct, nil)
23 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Crypting Things (3/3)

Problem:

› Insecure random number generation with math/rand
› This might generate predictable random numbers!
› AES‐GCM breaks fatally in case nonce is ever reused for same key (see VPNs, TLS)
› There are recommended upper message size limits for using the same key (see NIST SP
800‐38D)

Fix:

› Use crypto/rand for random numbers
› Ensure that limit for use of same key is not exceeded
› Random nonce is ok in some cases, but better use a counter for nonce

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

10. Password Hashing

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Password Hashing (1/2)
Which one should I use to store passwords?

1 string hash_password1(string password)
2 {
3 return MD5(password);
4 }
5

6 string hash_password2(string password)
7 {
8 string salt = random_salt();
9 return SHA256(password, salt) + "." + salt;

10 }
11

12 string hash_password3(string password)
13 {
14 string salt = random_salt();
15 return PBKDF2(HMAC_SHA256, password, 60000, 256)
16 }
17

18 string hash_password4(string password)
19 {
20 string salt = random_salt();
21 return bcrypt(password, salt, 4 /* = log2(iterations) */);
22 }

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Password Hashing (2/2)

› None of these is secure:
› MD5: lol
› SHA256: You can rent hardware that breaks that quite cheap
› PBKDF2: Too low iteration count (see LastPass!)
› bcrypt: Iterations too low

› Recommended Argon2id with recommended parameters
› If you cannot use that, bcrypt, scrypt and PBKDF2 are okay for legacy applications
› Adjust parameters regularly as per recommendations!
› See OWASP cheat sheet series on password storage
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Wrapping Up

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

Wrapping Up

How’s the score?
› 0‐3: oh boy…
› 4‐6: getting there…
› 7‐9: okay! :)
› 9+: <3

Software Security:
› Writing secure code is hard
› Every dev. contribute by being security
conscious

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

FIN

Thank you!
Questions, Comments?

David Gstir
david@sigma‐star.at

David Gstir, sigma star gmbh Towards More Secure Code or Why Devs Should Make My Job Harder

	Software Security
	Let's Play a Game!
	1. Privileges
	2. HTTP Requests
	3. Url Verification
	4. Clearing Buffers
	5. Access Checks
	6. Processing Input
	7. HTTP File Upload
	8. JSON Web Tokens
	9. Encryption
	10. Password Hashing
	Wrapping Up

